Platform-Based Design Methodology and Modeling for Aircraft Electric Power Systems

نویسندگان

  • Pierluigi Nuzzo
  • John B. Finn
  • Mohammad Mostafizur Rahman Mozumdar
  • Alberto L. Sangiovanni-Vincentelli
چکیده

In an aircraft electric power system (EPS), a supervisory control unit must actuate a set of switches to distribute power from generators to loads, while satisfying safety, reliability and real-time performance requirements. To reduce expensive re-design steps in current design methodologies, such a control problem is generally addressed based on minor incremental changes on top of consolidated solutions, since it is difficult to estimate the impact of earlier design decisions on the final implementation. In this paper, we introduce a methodology for the design space exploration and virtual prototyping of EPS supervisory control protocols, following the platform-based design (PBD) paradigm. Moreover, we describe the modeling infrastructure that supports the methodology. In PBD, design space exploration is carried out as a sequence of refinement steps from the initial specification towards a final implementation, by mapping higher-level behavioral models into a set of library components at a lower level of abstraction. In our flow, the system specification is captured using SysML requirement and structure diagrams. State-machine diagrams enable verification of the control protocol at a high level of abstraction, while lowerlevel hybrid models, implemented in Simulink, are used to verify properties related to physical quantities, such as time, voltage and current values. The effectiveness of our approach is illustrated on a prototype EPS control protocol design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modeling Specification Methodology to Support Simulation of Distributed Heterogeneous Power Systems

Today’s aircraft power systems have grown enormously in electrical content. This has been driven by a desire for system level optimization of aircraft in terms of performance and efficiency. In an effort to meet these new engineering constraints modern power electronics systems are extremely integrated and complex. A purely hardware driven methodology is no longer practical; the interplay betwe...

متن کامل

Reliability Analysis to Design Electric Power Systems for More - Electric Aircraft

Title of Document: APPLYING RELIABILITY ANALYSIS TO DESIGN ELECTRIC POWER SYSTEMS FOR MORE-ELECTRIC AIRCRAFT Baozhu Zhang, Master of Science, 2014 Directed By: Research Assistant Professor Huan Xu, Aerospace Engineering and Institute for Systems Research The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered co...

متن کامل

Parameters Design and Economy Study of an Electric Vehicle with Powertrain Systems in Front and Rear Axle

To achieve higher economy of the original driving scheme with single motor and settled gear ratio, new configurations with different powertrain systems in front and rear axle were designed. Firstly, according to the power and torque required by a micro electric vehicle (mEV) in various drive cycles, the parameters of a small and high power motor were determined. Secondly, for schemeⅠwith dual m...

متن کامل

On modeling and control of advanced aircraft electric power systems: System stability and bifurcation analysis

This paper presents a comprehensive dynamic bifurcation model and stability study of advanced aircraft electric power system (AAEPS). The proposed bifurcation model is utilized to investigate the aircraft electric power system stability under various system configurations and loading conditions. Further investigations are performed to verify the sustainability and robustness of the aircraft ele...

متن کامل

Designing and Modeling a Control System for Aircraft in the Presence of Wind Disturbance (TECHNICAL NOTE)

This paper proposes a switching adaptive control for trajectory tracking of unmanned aircraft systems. The switching adaptive control method is designed to overcome the wind disturbance and achieve a proper tracking performance for control systems. In the suggested system, the wind disturbance is regarded as a finite set of uncertainties; a controller is designed for each uncertainty, and a per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1311.6092  شماره 

صفحات  -

تاریخ انتشار 2013